【上海校区】Resample方法

python 未结 0 207
网络营销证书
网络营销证书 2021-04-27 09:59
悬赏:4
Bootstrap
在原有的训练数据集上重复性地随机选取n个数据.

核心思想在于,给定训练集,当你认为给定的训练集不能够很好地反应数据的真实分布时,可以采用重采样的方法,来增大样本.

Bagging
bootstrap aggregating

在原有的训练数据集D DD上,采用bootstrap的方法独立选取m mm个训练集分别训练m mm个分类器/回归,然后组合成最终的分类器/回归.

Bagging的方法能够提升不稳定分类器的识别准确率,因为它有效地平均了多个分类器之间的不稳定性.

Boosting
Boosting同样是生成多个子分类器,但是多个子分类器的产生是有序的,即一个分类器依赖于前一个分类器,并且子分类器着重关注于前一个分类器误分类的样本.


相关标签:
回答
  • 消灭零回复
提交回复